Exercise 73

A Tibetan monk leaves the monastery at 7:00 AM and takes his usual path to the top of the mountain, arriving at 7:00 PM. The following morning, he starts at 7:00 AM at the top and takes the same path back, arriving at the monastery at 7:00 Pm. Use the Intermediate Value Theorem to show that there is a point on the path that the monk will cross at exactly the same time of day on both days.

Solution

Let t be the time in hours since 7 AM , let $s_{1}(t)$ be the monk's distance from the monastery on day 1 , and let $s_{2}(t)$ be the monk's distance from the monastery on day 2 . The aim is to determine whether there is a value of t that satisfies the equation,

$$
s_{1}(t)=s_{2}(t) .
$$

Bring both functions to the left side.

$$
s_{1}(t)-s_{2}(t)=0
$$

At time $t=0, s_{1}(t)$ is zero since the monk is at the monastery, and $s_{2}(t)$ is a very large positive number since the monk is far away from the monastery.

$$
\text { At } t=0, \quad s_{1}(t)-s_{2}(t) \text { is negative. }
$$

At time $t=12, s_{1}(t)$ is a very large positive number since the monk is far away from the monastery, and $s_{2}(t)$ is zero since the monk is at the monastery.

$$
\text { At } t=12, \quad s_{1}(t)-s_{2}(t) \text { is positive. }
$$

The monk's position on both days is continuous on the closed interval [0,12], and $N=0$ lies between $s_{1}(0)-s_{2}(0)$ and $s_{1}(12)-s_{2}(12)$. By the Intermediate Value Theorem, then, there exists a root within $0<t<12$. In other words, there is a point on the path that the monk will cross at exactly the same time of day on both days.

